New evidence for parallel evolution of colour patterns in Malagasy poison frogs (Mantella).
نویسندگان
چکیده
Malagasy poison frogs of the genus Mantella are diurnal and toxic amphibians of highly variable and largely aposematic coloration. Previous studies provided evidence for several instances of homoplastic colour evolution in this genus but were unable to sufficiently resolve relationships among major species groups or to clarify the phylogenetic position of several crucial taxa. Here, we provide cytochrome b data for 143 individuals of three species in the Mantella madagascariensis group, including four newly discovered populations. Three of these new populations are characterized by highly variable coloration and patterns but showed no conspicuous increase of haplotype diversity which would be expected under a scenario of secondary hybridization or admixture of chromatically uniform populations. Several populations of these variable forms and of M. crocea were geographically interspersed between the distribution areas of Mantella aurantiaca and Mantella milotympanum. This provides further support for the hypothesis that the largely similar uniformly orange colour of the last two species evolved in parallel. Phylogenies based on over 2000 bp of two nuclear genes (Rag-1 and Rag-2) identified reliably a clade of the Mantella betsileo and Mantella laevigata groups as sister lineage to the M. madagascariensis group, but did not support species within the latter group as monophyletic. The evolutionary history of these frogs might have been characterized by fast and recurrent evolution of colour patterns, possibly triggered by strong selection pressures and mimicry effects, being too complex to be represented by simple bifurcating models of phylogenetic reconstruction.
منابع مشابه
Convergent evolution of chemical defense in poison frogs and arthropod prey between Madagascar and the Neotropics.
With few exceptions, aposematically colored poison frogs sequester defensive alkaloids, unchanged, from dietary arthropods. In the Neotropics, myrmicine and formicine ants and the siphonotid millipede Rhinotus purpureus are dietary sources for alkaloids in dendrobatid poison frogs, yet the arthropod sources for Mantella poison frogs in Madagascar remained unknown. We report GC-MS analyses of ex...
متن کاملHigh mitochondrial diversity within and among populations of Malagasy poison frogs.
The diurnal, brightly colored, and toxic frogs of the genus Mantella are among the most prominent representatives of the endemic anuran fauna of Madagascar. Especially three closely related species, M. aurantiaca, M. crocea, and M. milotympanum, are intensively collected for the pet trade, although basic data on their natural history and genetic diversity are still lacking. Our phylogenetic ana...
متن کاملConvergent Substitutions in a Sodium Channel Suggest Multiple Origins of Toxin Resistance in Poison Frogs.
Complex phenotypes typically have a correspondingly multifaceted genetic component. However, the genotype-phenotype association between chemical defense and resistance is often simple: genetic changes in the binding site of a toxin alter how it affects its target. Some toxic organisms, such as poison frogs (Anura: Dendrobatidae), have defensive alkaloids that disrupt the function of ion channel...
متن کاملMitochondrial evidence for distinct phylogeographic units in the endangered Malagasy poison frog Mantella bernhardi.
Mantella bernhardi is an endemic species of Malagasy poison frog threatened by loss and fragmentation of its natural habitat and collection for the pet trade. It is classified as threatened according to the International Union for Conservation of Nature and Natural Resources (IUCN) categories and included in Appendix II of the Convention on the International Trade of Endangered Species (CITES)....
متن کاملPhylogeny, recombination, and mechanisms of stepwise mitochondrial genome reorganization in mantellid frogs from Madagascar.
In Malagasy frogs of the family Mantellidae, the genus Mantella is known to possess highly reorganized mitochondrial (mt) genomes with the following characteristics: 1) some rearranged gene positions, 2) 2 distinct genes and a pseudogene corresponding to the transfer RNA gene for methionine (trnM), and 3) 2 control regions (CRs) with almost identical nucleotide sequences. These unique genomic f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular ecology
دوره 13 12 شماره
صفحات -
تاریخ انتشار 2004